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The possibility of substituting piecewise-linear for continuous o« =

= f(r) laws has been experimentally investigated in connection with
the electric-analog solution of problems of nonsteady heat conduction
with time-dependent boundary conditions of the third kind.

The investigation of the nonsteady thermal states
of heat engine components involves the solution of the
Fourier equation
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with boundary conditions of the third kind
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Although, in transient regimes of heat engine opera-
tion, not only the temperature of the medium but also
the heat-transfer coefficients vary within fairly wide
limits, modern analog computers, which can be used
to solve problems of nonsteady heat conduction in
bodies of complex configuration, do not have means
of assigning time-dependent boundary conditions of
the third kind with allowance for the variability of both
the heat-transfer coefficients @ = f(r) and the tem-
perature Ty, = f(7). Only some of them [1, 2] have
means of simulating Ty, = f(7).

This situation has led to various attempts to take
the variability of the heat-transfer coefficients into
account, For example, Ivashchenko and Zolotogorov
[3] propose a method of successive approximations
consisting essentially in leaving one component (o)
constant, while the other (Ty,) is allowed to vary, the
Ty, = f(7) relation being corrected starting from the
conditions of conservation of the true heat fluxes at
the boundaries of the body. Although this method gives
acceptable accuracy after a relatively small number
of approximations, it is really suitable only for sys-
tems with a limited number of nodes. In the presence
of a considerable number of boundary nodes (com-
ponents of complex configuration), in solving problems
of nonsteady heat conduction on RC networks the con-
tinuous function o = f(7) is replaced with a piecewise-
linear one, with the o constant on a bounded time inter-
val and changing stepwise on the next interval [2].

It now becomes necessary to determine the maximum
errors introduced into the nonsteady temperature field
by substituting @ = const for &« = var on a finite num-
ber of intervals. In view of the lack of information of
this kind, it is necessary to reduce the time intervals
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of constant o, which involves a substantial increase
in the number of reassignments of the initial and
boundary conditions.

In solving problems of nonsteady heat conduction
by the Liebmann method on R networks [4] and choos-
ing the time step with allowance for the variation of
T = f(1), the lack of information on the degree of in-
fluence of o = f(1) on the temperature field also leads
to the necessity of reducing the time step and adding
to the time required to setup the problem, if the inter—
vals of constant o are shorter than the intervals of
constant Tyy,.

The authors' investigation of the accuracy of assign-
ment of the boundary resistances in the electric-analog
solution of certain problems of nonsteady heat con~
duction provides only a partial answer to the question
of the error introduced into the temperature field when
o = const is substituted for o = varover abroad range
of variation of the heat-transfer coefficients. In this
investigation, we examined only the effect of the error
in assigning the boundary conditions on the variation
of the temperature at individual points of bodies of
complex configuration for limited deviations of . It
was therefore necessary to broaden the scope of the
investigation to answer the question of the permis~
sibility of a piecewise~linear approximation of the
function @ = f(r) in problems of nonsteady heat con-
duction with a finite number of intervals of constancy.

The investigations were carried out on the R net~
work of the MSM-1 analog computer, modernized for
solving nonsteady problems of heat conduction [5], and
on a USM-1. As objects of investigation we selected
the rotor and housing of a steam turbine, at whose
boundaries very considerable changes in the rate of
heat transfer are observed during startup.

Since our aim reduced to determining the distortion
of the temperature field caused by substituting a piece-
wise-linear for a continuous law of variation o = f(7),
to exclude the influence of other factors in the R~
network solutions we considered only problems in
which the temperature of the medium was constant.
The presence of a functional converter unit in the
USM-1 made it possible to solve on RC networks prob-
lems in which the variability of Ty, = f(7) is taken into
account, without further distorting the temperature
field as a result of an error in Ty,, or, at any rate,
with such distortion reduced to a minimum,

In selecting the piecewise-linear function oy, = f(r)
which approximates the function o = f(7), as the
approximate value of o on each time interval [T, Tj41),



at whoge boundaries the values of the function are,
respectively, equal to a; and aj+;, we took a value
a'gi whose deviation from the actual function did not
exceed an amount &y,4x at the ends of each time inter-

val:
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These results showed that the piecewise-linear
function oy = f(7) approximates the function « = f{(1).
In the first cycle of investigation, the laws of piece-
wise-linear approximation were selected so that on
no time interval did &, exceed +5%, +10%, or +15%.
The curves in Fig. 1b show the variation of the
relative temperature at certain points of the rotor
and turbine housing in the heating regime for varia-
tion of the heat~transfer coefficient at the surface
according to the law of Fig. la. These curves con-
vincingly show that substituting for the continuous law
o = f(1) a piecewise-linear one with dypax = +15%
has practically no effect on the temperature variation
even at points on the heat-transfer surface.
Considering that we covered quite a broad range
of variation of the ratio of the internal and external
thermal resistances (a/A = 1—20) and that in solving
on R networks a decrease in the departures of the
approximate values a4 from the real values was
simultaneously accompanied by a decrease in the time
step AT and, hence, Ry, it may be assumed that in
solving problems of nonsteady heat conduction with
time-dependent boundary conditions of the third kind
on electric analogs it is possible to substitute piece-

wise-linear for continuous & = f{(7) laws. The solution
obtained will be accurate enough if dmax = =15%.

By replacing the continuous a = f(7) law with a
piecewise-linear one with amaximum deviation §,,5% =
= +15% on each time interval, it is possible, if the
time of the process is divided into ten intervals, to
obtain an almost exact solution in problems in which
the heat-transfer coefficients vary by a factor of up
to 20 during the process. Hence, in using RC net-
works to solve problems of nonsteady heat conduction
with time~dependent boundary conditions of the third
kind, given a piecewise-linear approximation of the
functions @ = f(r), the necessary reassignment of
the boundary resistances at a point is limited.

However, since in transient regimes the heat-
transfer coefficients at different points vary at dif-
ferent rates, it may turn out that the reassignment
of the boundary resistances at the individual points
is displaced in time, so that the RC network solution
is no different from the R network solution, since
the time intervals in the reassignment of the initial
and boundary conditions remain sufficiently small.

Of course, it is necessary to estimate the error
introduced into the temperature field on the assump~
tion of much larger 6p,9%x. Accordingly, we used the
same elements in an investigation to determine the
distortion of the temperature field in the presence of
a rougher approximation in the assignment of the
boundary conditions.

As the results show (Fig. 2), for dmax on the order
of +30%, the maximum error in the relative tempera-
ture at the heat-transfer surface does not exceed
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Fig. 1. Variation of the rate of heat transfer (a) at the boundaries
of the investigated region a/a, = f(1) at oy = 29 W/m? - deg for
the housing and oy = 58.3 W/m? - deg for the rotor of a steam
turbine: 1) calculation; 2) piecewise-linear approximation with
Smax = £15%. Variation of the relative temperature (b) at in-
dividual points of the elements of the turbine housing and rotor
for /ey = f{1) in accordance with Fig. 1a: 1) at point 92;
2) at point 93; 3) at point 6; 4) at point 14; 5) at point 9; I) for
Omax = £5%; II) for dmax = +10%; III) for &, = +15%.
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Fig. 2. Variation of the rate of heat transfer (a) at the boundaries
of the investigated region o/a, = f(1) at @y = 29 W/m? - deg for
the housing and oy = 58.3 W/m2 - deg for the rotor of a steam
turbine: 1) calculation; 2) piecewise-linear approximation with
Smax = *30%; 3) the same with 6 = +42.5%; 4) the same
when the mean value of the function on each time interval is
taken as the approximating value, 845 = +74%, —30%. Varia-
tion of the relative temperature (b) at individual points of the
turbine housing and rotor (Fig. 1a) for variation of a/ay = f(7)
in accordance with Fig. 2a: 1) at point 92; 2) at point 93;
3) at point 6; 4) at point 14; 5) at point 9; I) for ¢ = £30%,
IT) for 0y ax = #42.5%; II) for &, = +74%, —30%; IV) cal-
culated curve for Sy ax = +15%.
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Fig. 3. Variation of the rate of heat transfer (a) at the boundaries
of the investigated region o/, = f(r) at oy = 29 W/m® - deg:

1) calculation; 2) piecewise-linear approximation with dpgx =

= +15%; 3) the same with 8,5 = +32%; 4) the same with 6 5¢ =
= +70%. Variation of the relative temperature (b) at the point 6 of
the steam-turbine housing (Fig. 1a) for various laws of variation of
a/ay = flr): 1) for law A; 2) for law B; 3) for law C (Fig. 3a);

1) for Smax = £15%; 1) for 6,,,, = +32% III) for gy = £70%.



+2.5%. It should be noted that for points remote from
the heat-transfer surface this error is sharply re-
duced.

At Opax = #42.5% the maximum error in the tem-
perature at the heat-transfer surface does not exceed
+4.5%.

In analyzing data on the variation of the relative
temperature 8 = f(Bi, r) at individual points of a tur-
bine rotor [6] and data on the variation of 8 = f(Bi, 1)
in other elements, it is necessary to emphasize that
when a certain level of heat transfer, corresponding
to a ratio &/A = 8, is reached it is possible to accept
a much greater departure of the approximate values
of the heat~transfer coefficients oy from the real
values without any significant distortion of the tem~-
perature distribution.

In Fig. 3b the curves showing the variation of the
relative temperature at point 6 of the turbine housing
(see Fig, 1a) are presented for various laws o = f(r)
and various methods of piecewise-linear approxima-
tion.

The curves show that at large ratios a/\ it is also
possible to accepta large error in assigning o with-
out seriously distorting the temperature field. For
example, in the case of curve A in Fig. 3a from the
moment corresponding to a ratio /A > 7.0, dmax
was equal to 70%, but the error of the relative tem-
perature did not exceed +4,5%. At high values of
a {@/h > 15) replacing the real function & = f(7) with
a piecewise-linear one with 6y,ax = +15% and & = const
with 6pyax = +32% (curve 3 in Fig. 3b) has almost no
effect on the variation of the relative temperature
with time at the point in question,

The results of the last cycle of investigation show
that when a continuous function is replaced with a
piecewise-linear one in problems with a large varia~
tion of the heat-transfer coefficients at the boundaries,
it is desirable to make 4, variable, increasing it
as the ratio o/A increases. This makes it possible to
replace any function o = f(7) with a piecewise-linear
function with up to ten intervals of constant o while
preserving the accuracy of the solution on electric
analogs.

Thus, our results permit one to select, from the
given laws of variation of the heat-transfer coefficients

at the boundaries of the investigated regions, thedura-
tion of the time intervals for which the variability of

¢ can be neglected, and to determine the errors in the
temperature field resulting from the substitution of
piecewise-linear for continuous @ = f(7) laws,

1t should be kept in mind that, since in solving on
R networks the function Ty, = f(7) is also expressed
as a piecewise-~linear approximation, the durations of
the intervals of constant Ty, and @ mustbe coordinated.
In view of the decisive influence of Ty, on the tem-
perature field [4], it is desirable to make the inter-
values of constant o equal to, or multiples of, the inter-
vals of constant T, .

On the basis of these investigations we developed a
controlled-resistance unit (CRU) for simulating time-
dependent heat-transfer coefficients. Asthe a-simula-
ting elements of this unit we took boundary resistance
circuits (Fig. 4) controlled by pulses from the timer
of the USM~1 functional converter unit. The use of a
CRU makes possible the continuous solution of prob-
lems of nonsteady heat conduction with time-dependent
boundary conditions of the third kind on RC networks.

As a result of the presence in USM~1 type machines
of a unit for simulating the time-dependent temperature
Tm = f(r) of the medium, in this case the error in the
temperature field of the investigated region is deter-
mined by the error introduced by the piecewise-linear
approximation of the function« = f(7) in the CRU.

To calculate the boundary resistance circuits, we
developed a method that makes it possible for a finite
number of intervals of constant o to obtain a minimum
error in the solution of the problem. This method can
also be used for calculating the time intervals (-rj) on
which the variability of the heat-transfer coefficients
can be neglected without loss of accuracy and the as-
signed values of the boundary resistances on these
intervals (Rp;) in solving problems of nonsteady heat
conduction by the Liebmann method on R networks.

1t can be shown that when any function o = f(7) is
replaced with a piecewise-linear function oy = f(7)
for each selected &4, irrespective of the form of
the function @ = f(7), the relative values &p; = aj/
/@y and oi4y = @j+1/0, at which the approximate
values of the heat-transfer coefficients change step-
wise from Ta; to &ajy,, are strictly defined and re-
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Fig. 4. Boundary resistance circuit simulating time-dependent heat-
transfer coefficients: SS denotes the semiconductor switches effecting
a stepwise change in the internal resistance of the circuit, 7j the time
pulses controlling the operation of the switches; Um= f(7) is a func-
tion simulating the variation of the temperature of the medium with time.
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lated by the expressions:
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Here, i varies from 1 to n + 1 for aj and from 1 to
n for o aj

If we assign the number of intervals of constancy
(n) for the piecewise-linear approximation of any
monotonic function o = f{r) with 5y, 5x = const on all
the intervals, then the value of the 6y, ,5 obtained is

determined from the expression

7k —1
amax':: (f -100, (10)

Y k1
where k = api/o.

It should be emphasized that the relative values of
51 and &y; for various 6y, 5« in the piecewise-linear
approximation of the functions & = a/a, = f{1) can be
calculated in advance from relations (4)=(10) and
collected in tables whose use considerably accelerates
the process of calculating the boundary resistance
circuits.

In the process of calculation, the values of aaj on
each time interval are determined from the expression

Qa; == Qg, Qg. a1)

The boundaries of the time intervals (rj+;), at which
it is necessary to go over from oaj to @aj+,, are de-
termined graphically from the given functions o = f(7).
These transitions must be made at times when the
function acquires the value @j,44.

Having calculated all the o and ag; from (4)—(11),
we can construct the piecewise-linear function o, =
= f(1) which approximates the given function o = f(7).

The equations for calculating the boundary resis-
tances can be represented in the form

Ry, = Riﬂl. (12)

g A a,,

To reproduce the piecewise-linear function Rpy, =
= f(r) calculated from (4)—(12), which is an analog of
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function @, = f(r), it is necessary to set up a bound-
ary resistance circuit in the CRU. The values of the
resistances (R{)i) forming the circuit are determined
as follows:

Ry, = R,
R{,‘ = Ry, — Ry,
Ry, = Ry, — Ry, = Rv, —(Rb, + R-,),

~R,,, =Ry, — X Ry (13)

From these relations it is necessary to calculate
the boundary resistance circuits for each boundary
point of the region investigated, if in solving problems
of nonsteady heat conduction with boundary conditions
of the third kind the function @ = f(7) is approximated
with a piecewise-linear one.

Thus, we have demonstrated the possibility of re-
placing continuous functions « = f(7) with piecewise-
linear ones with a finite number of intervals of con~-
stant o without loss of accuracy in electric-analog
solutions of problems of nonsteady heat conduction
with time-dependent boundary conditions of the third
kind; we have established the feasibility of using
boundary resistance circuits to simulate time-de-
pendent heat-transfer coefficients in a controlled re-
sistance unit; and, finally, we have succeeded in
developing a method of calculating boundary resis~
tance circuits that minimize the error in solving the
problem.

NOTATION

Tm(x,y,2,7) is the temperature of the medium as
a function of the coordinates and time, deg; o(X,y,
7, T) is the heat-transfer coefficient as a function of
the coordinates and time, W/m? - deg; A is the ther-
mal conductivity of the material, W/m - deg; ¢ is the
specific heat of the material, W/kg - deg; v is the
specific weight of the material, kg/m% T is the time,
sec; 6 is the relative temperature; Bi is the Biot
number; aa; is the approximate value of the heat-transfer
coefficients assigned upon substituting a piecewise-
linear for a continuous law on each time interval
[7i, Ti+]; @ is the minimum value of the heat-transfer
coefficients during the solution of a problem; Omax
is the maximum deviation of the approximate value
a4 from the real value on each time interval, in %;
Ry is the boundary resistance, ohms; Rjp is the in-
ternal resistance of the part of the network adjacent
to the boundary point, ohms; A is a coefficient which
depends on the type of boundary point.
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