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The possibility of substituting piecewise-linear for continuous c~ = 
= JO') laws has been experimentally investigated in connection with 
the electric-analog solution of problems of nonsteady heat conduction 
with time-dependent boundary conditions of the third kind. 

The inves t igat ion of the nonsteady t h e r m a l  s ta tes  
of heat engine components  involves  the solut ion of the 
F o u r i e r  equation 

(1) 

with boundary  condit ions of the th i rd  kind 

a(x,  v, z, ,)[Tm(X, V, z, *)--T~o~X, V, z, r = ~ 0 T  (2) 
On 

Although, in t r a n s i e n t  r eg imes  of heat engine ope ra -  
t ion,  not only the t e m p e r a t u r e  of the medium but also 
the h e a t - t r a n s f e r  coeff ic ients  vary  within fa i r ly  wide 
l imi t s ,  modern  analog computers ,  which can be used 
to solve p rob lems  of nonsteady heat  conduction in 
bodies of complex conf igurat ion,  do not have means  
of ass ign ing  t ime-dependen t  boundary condit ions of 
the th i rd  kind with al lowance for the var iab i l i ty  of both 
the h e a t - t r a n s f e r  coeff icients  a = f(~) and the t e m -  
p e r a t u r e  T m = f(T). Only some of them [1, 2] have 
means  of s imula t ing  T m = f(~). 

This  s i tuat ion has led to va r ious  a t tempts  to take 
the va r iab i l i ty  of the h e a t - t r a n s f e r  coeff ic ients  into 
account. For  example,  Ivashchenko and Zolotogorov 
[3] propose  a method of succes s ive  approximat ions  
cons is t ing  e s sen t i a l ly  in leaving one component  (a) 
constant ,  while the other  (T m) is  allowed to vary ,  the 
T m = f(7)  re la t ion  being cor rec ted  s ta r t ing  f rom the 
condit ions of conse rva t ion  of the t rue  heat  f luxes at 
the boundar ies  of the body. Although this  method gives 
acceptable  accuracy  af ter  a r e la t ive ly  smal l  n u m b e r  
of approximat ions ,  it is  r ea l ly  sui table  only for  s y s -  
t ems  with a l imi ted  n u m b e r  of nodes.  In the p r e s e n c e  
of a cons ide rab le  n u m b e r  of boundary nodes (com- 
ponents of complex configuration),  in solving p rob lems  
of nonsteady heat conduction on RC networks  the Con- 
t inuous function ~ = f (v)  is  replaced  with a p iecewise -  
l i nea r  one, with the ~ constant  on a bounded t ime  i n t e r -  
val  and changing s tepwise  on the next in te rva l  [2]. 

It now becomes  n e c e s s a r y  to de t e rmine  the m a x i mum 
e r r o r s  introduced into the nons teady t e m p e r a t u r e  field 
by subs t i tu t ing  a = const  for  a = var  on a f ini te  n u m -  
b e r  of in te rva l s .  In view of the lack of in format ion  of 
th is  kind, it i s  n e c e s s a r y  to reduce  the t ime  i n t e r va l s  
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of constant  a ,  which involves  a subs tan t i a l  i n c r e a s e  
in the n u m b e r  of r e a s s i g n m e n t s  of the in i t ia l  and 
boundary  condit ions.  

In solving p rob lems  of nons teady heat  conduction 
by the Liebmann method on R networks  [4] and choos-  
ing the t ime  step with al lowance for  the var ia t ion  of 
T m = f(~),  the lack of in format ion  on the degree  of i n -  
f luence of a = f(~-) on the t e m p e r a t u r e  field also leads 
to the necess i ty  of reduc ing  the t ime  step and adding 
to the t ime  r equ i r ed  to se tup  the p rob lem,  if the i n t e r -  
vals  of constant  a a re  sho r t e r  than the in t e rva l s  of 
constant  T m. 

The au thors '  inves t iga t ion  of the accuracy  of a s s i gn -  
ment  of the boundary  r e s i s t a n c e s  in the e l e c t r i c - a n a l o g  
solution of ce r t a in  p rob lems  of nonsteady heat  con-  
duction provides  only a pa r t i a l  answer  to the quest ion 
of the e r r o r  in t roduced into the t e m p e r a t u r e  f ie ldwhen 
a = const  is  subst i tu ted for  a = v a t  over  a b r o a d  range 
of var ia t ion  of the h e a t - t r a n s f e r  coeff icients .  In this  
inves t iga t ion ,  we examined only the effect of the e r r o r  
in ass ign ing  the boundary  condit ions on the va r i a t ion  
of the t e m p e r a t u r e  at individual  points of bodies of 
complex conf igura t ion for  l imi ted  devia t ions  of ~. It 
was the re fo re  n e c e s s a r y  to b roaden  the scope of the 
inves t iga t ion  to answer  the quest ion of the p e r m i s -  
s ibi l i ty  of a p i e c e w i s e - l i n e a r  approximat ion  of the 
function a = f(~-) in p rob l ems  of nons teady heat  con-  
duction with a f ini te  n u m b e r  of i n t e rva l s  of constancy.  

The inves t iga t ions  were  c a r r i e d  out on the R ne t -  
work of the MSM-1 analog computer ,  modern ized  for  
solving nons teady p rob lems  of heat  conduction [5], and 
on a USM-1. As objects  of inves t iga t ion  we se lec ted  
the ro to r  and housing of a s t eam tu rb ine ,  at whose 
boundar ies  very  cons ide rab le  changes in the ra te  of 
heat t r a n s f e r  a re  observed  dur ing  s tar tup.  

Since our  a im reduced to de t e r mi n i ng  the d i s to r t ion  
of the t e m p e r a t u r e  f ield caused by subs t i tu t ing  a p i ece -  
w i s e - l i n e a r  for  a cont inuous law of va r i a t ion  a = f(7) ,  
to exclude the inf luence of o ther  f ac to r s  in the R-  
network solut ions we cons ide red  only p rob l ems  in 
which the t e m p e r a t u r e  of the medium was constant .  
The p r e s e n c e  of a funct ional  c onve r t e r  uni t  in the 
USM-1 made it poss ib le  to solve on RC networks  p rob -  
lems  in which the va r iab i l i ty  of T m = f(~') is  taken into 
account,  without fu r the r  d i s to r t ing  the t e m p e r a t u r e  
f ield as a r e su l t  of an e r r o r  in  Tin,  or ,  at any ra te ,  
with such d i s to r t ion  reduced to a min imum.  

In se lec t ing  the p i e c e w i s e - l i n e a r  funct ion a n = f(~) 
which approximates  the function a = f(~),  as the 
approximate  value of a on each t ime  in te rva l  [~-i, ~i+l], 



at whose boundar ies  the values  of the function are ,  
r e spec t ive ly ,  equal  to a i  and a i+ l ,  we took a value 
a a i  whose deviat ion f rom the actual  funct ion did not 
exceed an amount 6ma x at the ends of each t ime  i n t e r -  
val : 

These r e s u l t s  showed that the p i e c e w i s e - l i n e a r  
funct ion a n  = f ( ~ )  approx imates  the flmction a =f(~).  

In the f i r s t  cycle  of inves t iga t ion ,  the laws of p i ece -  
w i s e - l i n e a r  approximat ion  were  se lec ted  so that on 
no t ime  in t e rva l  did 6ma x exceed • • or  ~-15%. 

The cu rves  in Fig. l b  show the va r i a t ion  of the 
re la t ive  t e m p e r a t u r e  at ce r t a in  points  of the ro to r  
and tu rb ine  housing in the heat ing r eg ime  for  v a r i a -  
t ion of the h e a t - t r a n s f e r  coeff icient  at the su r face  
according  to the law of Fig. l a .  These  curves  con-  
vincingly  show that subs t i tu t ing  for  the cont inuous law 

= f ( r )  a p i e c e w i s e - l i n e a r  one with 5ma x -< ~=15% 
has  p rac t i ca l ly  no effect on the t e m p e r a t u r e  va r i a t ion  
even at points  on the h e a t - t r a n s f e r  surface .  

Cons ider ing  that we covered quite  a b road  range  
of va r i a t ion  of the ra t io  of the i n t e rna l  and ex te rna l  
t he rma l  r e s i s t a n c e s  (o~/k = 1 -20)  and that in solving 
on R networks  a d e c r e a s e  in the d e p a r t u r e s  of the 
approximate  values  a a  f rom the r ea l  values  was 
s imul taneous ly  accompanied  by a d e c r e a s e  in the t ime  
step A~ and, hence ,  Rt, it may be a s sumed  that in 
solving p rob l ems  of nonsteady heat conduction with 
t ime-dependen t  boundary  condit ions of the th i rd  kind 
on e lec t r i c  analogs it i s  poss ib le  to subs t i tu te  p i ece -  

w i s e - l i n e a r  for  cont inuous ~ = f(v)  laws. The solut ion 
obtained will  be accura te  enough if 5max -<- • 

By rep lac ing  the cont inuous ~ = f(~-) law with a 
p i e e e w i s e - l i n e a r  one with a m a x i m u m  deviat ion 6ma x = 
= ~15% on each t ime  in t e rva l ,  it is poss ib le ,  if the 
t ime  of the p roces s  is  divided into ten  i n t e rva l s ,  to 
obtain an a lmos t  exact solut ion in p rob lems  in which 
the h e a t - t r a n s f e r  coeff ic ients  vary  by a fac tor  of up 
to 20 dur ing  the p rocess .  Hence,  in u s ing  RC n e t -  
works  to solve p rob l ems  of nons teady heat conduct ion 
with Lime-dependent  boundary  condit ions of the th i rd  
kind,  given a p i e c e w i s e - l i n e a r  approximat ion  of the 
funct ions ~ = f(v) ,  the n e c e s s a r y  r e a s s i g n m e n t  of 
the boundary  r e s i s t a n c e s  at a point is  l imited.  

However,  s ince  in t r a n s i e n t  r e g i m e s  the hea t -  
t r a n s f e r  coeff icients  at d i f ferent  points vary  at d i f -  
fe ren t  r a t e s ,  it may tu rn  out that the r e a s s i g n m e n t  
of the boundary  r e s i s t a n c e s  at the individual  points  
is  d isplaced in t ime ,  so that the RC network solut ion 
is  no di f ferent  f rom the R network solut ion,  s ince  
the t ime  in t e rva l s  in the r e a s s i g n m e n t  of the in i t ia l  
and boundary  condit ions r e m a i n  suff ic ient ly  smal l .  

Of course ,  it is  n e c e s s a r y  to e s t ima te  the e r r o r  
int roduced into the t e m p e r a t u r e  f ield on the a s s u m p -  

t ion of much l a r g e r  6ma x . Accordingly ,  we used the 
same  e lements  in an inves t iga t ion  to de t e r mine  the 
d is tor t ion  of the t e m p e r a t u r e  f ield in the p r e s e n c e  of 
a rougher  approximat ion  in  the a s s ignmen t  of the 
boundary  condit ions.  

As the r e s u l t s  show (Fig. 2), for 6ma x on the o rder  
of  ~30%, the m a x i m u m  e r r o r  in the r e l a t ive  t e m p e r a :  
tu re  at the h e a t - t r a n s f e r  sur face  does not exceed 
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Fig. 1. Var ia t ion  of the ra te  of heat  t r a n s f e r  (a) at the boundar ies  
of the inves t iga ted  reg ion  ~ / ~ 0  = f(~') at ~0 = 29 W/ m 2 �9 deg for 
the housing and s 0 = 58.3 W / m s . deg for the ro to r  of a s t e a m  
t u r b i n e :  1) calcula t ion;  2) p i e c e w i s e - l i n e a r  approximat ion  with 
6ma x = ~15%. Var ia t ion  of the r e l a t ive  t e m p e r a t u r e  (b) at i n -  
dividual  points of the e l emen t s  of the tu rb ine  housing and ro to r  
for ~ /~0  = f(~-) in accordance  with Fig. l a :  1) at point  92; 
2) at point 93; 3) at point  6; 4) at point 14; 5) at point 9; I) for 

6 m a  x = • II) for  6ma x = :~10~; III) for 5ma x = ~15%. 
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Fig. 2. Variation of the rate of heat transfer (a) at the boundaries 
of the invest igated region ~ /~0  = f(T) at s 0 = 29 W / m 2 �9 deg for 
the housing and a0 = 58.3 W/m 2 �9 deg for the ro to r  of a s team 
tu rb ine  : 1) calculat ion;  2) p i e e e w i s e - l i n e a r  approximat ion  with 
6max = ~30~o; 3) the same  with 6ma x = • 4) the same 
when the mean  value of the function on each t ime in t e rva l  is  
taken as the approximat ing  value,  5ma x = +74~o, -30%. V a r i a -  
t ion of the re la t ive  t e m p e r a t u r e  (b) at individual  points  of the 
tu rb ine  housing and ro to r  (Fig. l a )  for var ia t ion  of a / s  0 = f ( r )  
in accordance  with Fig. 2a: 1) at point 92; 2) at point 93; 
3) at point 6; 4) at point 14; 5) at point 9; I) for 6ma x = +30%, 
IT) for 6ma x = • TIT) for 6ma x = +74~,  -30%;  IV) ca l -  

culated curve  for  5ma x = ~157~ 
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Fig. 3. Var ia t ion of the r a t e  of heat  t r a n s f e r  (a) at the boundar ies  
of the inves t iga ted  region  a / s  0 = f(T) at s 0 = 29 W/ m 2 �9 deg: 
1) calculat ion;  2) p i e c e w i s e - l i n e a r  approximat ion  with 6ma x = 
= • 3) the same  with 5ma x = ~32~o; 4) the s ame  with 6ma x = 
= i70~o. Var ia t ion  of the r e l a t ive  t e m p e r a t u r e  (b) at the point 6 of 
the s t e a m - t u r b i n e  housing (Fig. la)  for va r ious  laws o fva r i a t ion  of 
~ /~0  = f (T):  1) for law A; 2) for law B; 3) for law C (Fig. 3a); 
I) for 5ma x = * 15%; II) for  5ma x = +32%; III) for 6ma x --- ~70%. 
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=L2.5%. It should be noted that  for points r e m o t e  f rom 
the h e a t - t r a n s f e r  su r face  this  e r r o r  is  sharply  r e -  
duced. 

At 5ma x = ~42.5%the  m a x i m u m  e r r o r  in the t e m -  
pe ra tu re  at the h e a t - t r a n s f e r  su r face  does not exceed 
=E4.5%. 

In analyzing data  on the va r i a t ion  of the r e l a t ive  
t e m p e r a t u r e  0 = f (Bi ,  T) at individual  points  of a t u r -  
bine ro to r  [6] and data  on the va r i a t ion  of 0-= f{Bi ,  ~) 
in  other  e l emen t s ,  it  is  n e c e s s a r y  to emphas ize  that 
when a c e r t a i n  level  of heat  t r a n s f e r ,  co r re spond ing  
to a ra t io  ~/% -> 8, is r eached  it is  poss ib le  to accept 
a much g rea t e r  depa r tu re  of the approximate  values  
of the h e a t - t r a n s f e r  coeff ic ients  a a  f rom the r e a l  
values  without any s ignif icant  d i s to r t ion  of the t e m -  
pe ra tu re  d i s t r ibu t ion .  

In Fig. 3b the cu rves  showing the va r i a t ion  of the 
r e l a t i v e  t e m p e r a t u r e  at point 6 of the tu rb ine  hous ing  
(see Fig. l a )  a re  p resen ted  for va r ious  laws a = f(~)  
and var ious  methods of p i e c e w i s e - l i n e a r  app rox ima-  
tion. 

The curves  show that at l a rge  r a t io s  ~ / k  it is  also 
poss ib le  to accept a l a rge  e r r o r  in a s s ign ing  ~ with-  
out s e r ious ly  d i s to r t ing  the t e m p e r a t u r e  field. For  
example ,  in the case  of curve  A in Fig. 3a f rom the 
moment  co r respond ing  to a ra t io  (~/~ > 7.0, 5ma x 
was equal to 70%, but the e r r o r  of the r e l a t i v e  t e m -  
p e r a t u r e  did not exceed • At high values  of 

((~/~ > 15) r ep l ac ing  the rea l  function ~ = f(T) with 
a p i e e e w i s e - l i n e a r  one with 5ma x = • a n d ~  = const  
with 5ma x = =L32% (curve 3 in Fig. 3b) has a lmos t  no 
effect on the var ia t ion  of the r e l a t ive  t e m p e r a t u r e  
with t ime  at the point in quest ion.  

The r e s u l t s  of the las t  cycle of inves t iga t ion  show 
that when a cont inuous function is r ep laced  with a 
p i e c e w i s e - l i n e a r  one in p rob l ems  with a l a rge  v a r i a -  
t ion of the h e a t - t r a n s f e r  coeff icients  at the boundar i e s ,  
it is des i r ab le  to make 6ma x va r i ab le ,  i n c r e a s i n g  it 
as the ra t io  ~/% i n c r e a s e s .  This  makes  it poss ib le  to 
r ep lace  any function ~ = f(T) with a p i e c e w i s e - l i n e a r  
function with up to ten i n t e rva l s  of constant  ~ while 
p r e s e r v i n g  the accuracy  of the solut ion on e lec t r i c  
analogs.  

Thus ,  our  r e s u l t s  pe rmi t  one to se lec t ,  f rom the 
given laws of va r i a t ion  of the h e a t - t r a n s f e r  coeff ic ients  

at the boundar ies  of the inves t iga ted  reg ions ,  the du ra -  
t ion  of the t ime  in t e rva l s  for which the va r i ab i l i ty  of 

can be neglec ted ,  and to de t e r mi ne  the e r r o r s  in the 
t e m p e r a t u r e  field r e su l t i ng  f rom the subs t i tu t ion  of 
p i e c e w i s e - l i n e a r  for continuous ~ = f(T) laws. 

It should be kept in mind  that ,  s ince in solving on 
R networks  the funct ion T m = f(T) is  also expressed  
as a p i e c e w i s e - l i n e a r  approximat ion ,  the dura t ions  of 
the in t e rva l s  of constant  T m and ~ mus t  be coordinated.  
In view of the dec is ive  inf luence of T m on the t e m -  
pe ra tu r e  field [4], it is des i r ab le  to make the i n t e r -  
va lues  of constant  ~ equal to, or mul t ip les  of, the i n t e r -  

vals  of constant  T m. 
On the bas i s  of these  inves t iga t ions  we developed a 

c o n t r o l l e d - r e s i s t a n c e  unit  (CRU) for s imula t ing  t i m e -  
dependent  h e a t - t r a n s f e r  coeff icients .  As the ~ - s i m u l a -  
t ing e lements  of this  uni t  we took boundary  r e s i s t a n c e  
c i r cu i t s  (Fig. 4) cont ro l led  by pulses  f rom the t i m e r  
of the USM-1 funct ional  c o n v e r t e r  unit.  The use  of a 
CRU makes  poss ib le  the continuous solut ion of p r o b -  
lems  of nonsteady heat conduction with t ime-dependen t  
boundary  condi t ions  of the th i rd  kind on RC networks.  

As a r e su l t  of the p r e s e n c e  in USM-1 type mach ines  
of a uni t  for  s imula t ing  the t ime-dependen t  t e m p e r a t u r e  
T m  = f(T) of the medium,  in  this  case  the e r r o r  in  the 
t e m p e r a t u r e  field of the inves t iga ted  region  is  de t e r -  
mined by the e r r o r  int roduced by the p i e e e w i s e - l i n e a r  
approximat ion  of the funct ion ~ = f ( T )  in  the CRU. 

To ca lcula te  the boundary  r e s i s t a n c e  c i r cu i t s ,  we 
developed a method that makes  it poss ib le  for a f ini te  
n u m b e r  of i n t e rva l s  of constant  ~ to obtain a m i n i m u m  
e r r o r  in the solut ion of the problem.  This  method can 
also be used for ca lcu la t ing  the t ime  i n t e r va l s  (Tj) on 
which the va r iab i l i ty  of the h e a t - t r a n s f e r  coeff icients  
can be neglected  without loss  of accuracy  and the a s -  
s igned values  of the boundary  r e s i s t a n c e s  on these  
in t e rva l s  (Rbi) in solving p rob l ems  of nons teady heat  
conduction by the Liebmann method on R networks.  

It can be shown that when any function (~ = f(T) is 
rep laced  with a p i e c e w i s e - l i n e a r  function a n = f(~) 
for each se lec ted  5max, i r r e s p e c t i v e  of the form of 
the function ~ = f(T),  the r e l a t ive  values  ~ai  = ~ a i /  
/~0 and ~i+1 = ~i+1/~0, at which the approximate  
values  of the h e a t - t r a n s f e r  coeff icients  change s tep-  
wise f rom ffai to ~ai+l,  a re  s t r i c t l y  defined and r e -  

R~i R~ R~ R~ R~. um=f x) . . . . .  
( o 

oundary point 

l T I ~ T I ~ ~T5 deac*ua*Jnginputs 

i actuating inputs 

Fig. 4. Boundary r e s i s t a n c e  c i rcu i t  s imula t ing  t ime-dependen t  hea t -  
t r a n s f e r  coef f ic ien ts :  SS denotes the semiconduc tor  switches effect ing 
a s tepwise change in the i n t e r n a l  r e s i s t a n c e  of the c i rcu i t ,  v i the t ime  
pulses  con t ro l l ing  the opera t ion  of the switches;  U m = f(~) is  a func-  
t ion s imula t ing  the va r i a t ion  of the t e m p e r a t u r e  of the medium with t ime.  
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lated by the e x p r e s s i o n s :  

= a l =  I-F , s i n c e  a ~ = l , ( 4 )  
100] 

- -  (i__(~max~ -- 
~ ' =  \ 100/  (5) 

1 + ~m.~ 
- . loo (6) 
~2 (~max ' 

I 
100 

(I + 6raax'~ ~-I 

ai " 1 8 m a x "  ' 

- -- ~max/ , (8) 
aai = at ( ! + 100 ) 

\(tZ~+lai+l -I--!--I ) 
6.~x= i a--L �9 100. (9) 

\ @i 

Here,  i va r i e s  f rom 1 to n + 1 for ~'i and f rom 1 to 
n for a a  i. 

If we ass ign  the number  of i n t e rva l s  of cons tancy  
(n) for the p i e c e w i s e - l i n e a r  approximat ion  of any 
monotonic function a --f(~-) with 6 m a  x = const  on all 
the in t e rva l s ,  then the value of the 5 m a  x obtained is 
de t e rmined  f rom the exp res s ion  

{;/k--1).loo, 
where k = a n + l / a  1. 

It should be emphas ized  that the re la t ive  values  of 
a i  and O~ai for var ious  6 m a  x in the p i ecewi se - l i nea r  
approximat ion  of the funct ions N = a / a  0 = f(T) can be 
calculated in advance f rom re l a t ions  (4)-(10) and 
col lected in tables  whose use cons ide rab ly  acce l e r a t e s  
the p rocess  of ca lcu la t ing  the boundary  r e s i s t a n c e  
c i rcu i t s .  

In the p rocess  of ca lcula t ion ,  the values  of a a i  on 
each t ime  in te rva l  a re  de t e rmined  f rom the express ion  

eta i -- aa i ao. (11) 

The boundar ies  of the t ime  in t e rva l s  (~'i+~), at which 
it is n e c e s s a r y  to go over  f rom a a i  to aa i+l ,  a re  de-  
t e r m i n e d  graphica l ly  f rom the given funct ions a = f(~). 
These  t r ans i t i ons  mus t  be made at t imes  when the 
function acqui res  the value a i+  1. 

Having calcula ted all the a i  and a a i  f rom (4)-(11),  
we can cons t ruc t  the p i e c e w i s e - l i n e a r  function a n = 
= f(T) which approximates  the given function a = f(r  

The equat ions for ca lcu la t ing  the boundary  r e s i s -  
t ances  can be r e p r e s e n t e d  in the form 

R~n 1 (12)  
R ~  = A aa E " 

To reproduce  the p i e e e w i s e - l i n e a r  function Rbn = 
= f(-r) ca lcula ted f rom (4)-(12),  which is an analog of 
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function a n = f ( r ) ,  it is n e c e s s a r y  to set  up a bound-  
ary  r e s i s t a n c e  c i r cu i t  in the CRU. The values  of the 
r e s i s t a n c e s  (R~i) fo rming  the c i rcu i t  a re  de t e rmined  
as follows : 

R'b, = R b ,  - -  R b . ,  

. . . .  o . �9 . o . �9 . . . . .  �9 

R;, = =  

F r o m  these  r e l a t i ons  it is n e c e s s a r y  to ca lcula te  
the boundary r e s i s t a n c e  c i r cu i t s  for each boundary  
point of the r eg ion  invest igated,  if in solving p rob lems  
of nonsteady heat  conduction with boundary  condit ions 
of the th i rd  kind the function a = f(T) is approximated 
with a p i e e e w i s e - l i n e a r  one. 

Thus,  we have demons t r a t ed  the poss ib i l i ty  of r e -  
p lac ing  cont inuous funct ions a = f (z )  with p i ecewise -  
l i nea r  ones with a f ini te  n u m b e r  of in t e rva l s  of con-  
s tant  a without loss  of accu racy  in e l e c t r i c - a n a l o g  
solut ions of p rob lems  of nons teady heat conduction 
with t ime-dependen t  boundary  condit ions of the th i rd  
kind; we have es tab l i shed  the feas ib i l i ty  of us ing  
boundary  r e s i s t a n c e  c i r cu i t s  to s imula te  t i m e - d e -  
pendent h e a t - t r a n s f e r  coeff icients  in a cont ro l led  r e -  
s i s t ance  unit; and, f inal ly,  we have succeeded in 
developing a method of ca lcu la t ing  boundary  r e s i s -  
tance c i r cu i t s  that m i n i m i z e  the e r r o r  in solving the 
problem.  

NOTATION 

Tm(x , y, z, ~-) is  the t e m p e r a t u r e  of the med ium as 
a function of the coordina tes  and t ime ,  deg; a ( x , y ,  
z, T) is the h e a t - t r a n s f e r  coefficient  as a function of 
the coordina tes  and t ime,  W/m 2 �9 deg; k is the t h e r -  
mal  conductivi ty of the ma t e r i a l ,  W/ m �9 deg; c is  the 
specific heat of the m a t e r i a l ,  W/kg �9 deg; y is the 
specif ic  weight of the m a t e r i a l ,  kg/m3; T is the t ime ,  
sec; 0" is the r e l a t ive  t e m p e r a t u r e ;  Bi is the Biot 
number ;  aa i  is the approximate  value of the h e a t - t r a n s f e r  
coeff icients  ass igned  upon subs t i tu t ing  a p i ecewise -  
l i nea r  for  a cont inuous law on each t ime in te rva l  
[7i, Ti+l]; a0 is  the m i n i m u m  value of the h e a t - t r a n s f e r  
coeff icients  dur ing  the solut ion of a problem;  6max 
is  the max imum deviat ion of the approximate  value 
a a f rom the r ea l  value on each t ime  in te rva l ,  in %; 
R b is  the boundary  r e s i s t a n c e ,  ohms; Rin is the in -  
t e rna l  r e s i s t a n c e  of the par t  of the network adjacent  
to the boundary  point,  ohms; A is  a coefficient  which 
depends on the type of boundary  point. 
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